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Abstract. Forest management greatly affects the distribution of tree species and the age class composition of a forest, 

shaping its overall structure and functioning, and in turn, surface-atmosphere exchanges of mass, energy, and momentum. In 10 

order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are 

necessary. Here, using Fennoscandia as a case study, we make use of regional National Forest Inventory (NFI) data to 

systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification 

scheme and related Look-Up-Table (LUT) of key forest structural parameter values was developed, and the classification 

was applied for NFI maps from Norway, Sweden and Finland. To provide a complete surface representation, our product 15 

was integrated with the European Space Agency Climate Change Intiative’s Land Cover (ESA CCI LC) map of present land 

cover (v.1.6.1) (http://maps.elie.ucl.ac.be/CCI/). An enhanced grouping by aboveground structure can improve climate 

predictions in intensively managed forested regions and is consistent with climate model routines that simulate the effects of 

land transitions through area-based changes in vegetation cover. Further, such a classification scheme is congruent with 

existing forestry tools employed to predict the evolution of forest structure over interannual time scales, and as such, may be 20 

viewed as a tool that links the climate and forest modeling communities.  
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1 Introduction  

The structural properties of a forest largely determine the amount of mass, energy, and momentum exchanged with the 

atmosphere contributing to weather and climate at multiple scales (Bonan 2008). Given their controls on photosynthesis, 

albedo, evapotranspiration, structural attributes like canopy leaf area and heights are crucial variables in modeling of carbon, 

water, and energy budgets. Many land models employed in climate research characterize forests and other vegetated surfaces 5 

according to their biophysical properties, grouping them into what is often termed Plant Functional Types (PFTs). At the 

heart of many land model parameterizations are structural variables like Leaf Area Index (LAI) and canopy heights, whose 

values are often PFT-dependent and sourced from Look-Up Tables (LUTs). LAI quantifies the areal interface between the 

land surface and the atmosphere and belongs to a group of Essential Climate Variables (ECVs) (GCOS, 2012). Canopy top 

and bottom heights ztop and zbottom are required for calculating roughness length and displacement height (Bonan et al., 2002) 10 

that determine resistances to heat, moisture, and momentum transfer.   

 

Differences in forest structure within a given forest cover type (henceforth PFT) can differ substantially depending on 

whether the forest is natural or intensively managed, and capturing this difference in climate simulations of anthropogenic 

land use activities remains a large challenge. Because structure is PFT-dependent, climate impacts from anthropogenic 15 

disturbances in forests that do not involve changes in PFT area but which do modify structure – like a clear-cut harvest, for 

example -- go undetected. One way to overcome this is by expanding the number of forest PFTs with sufficient 

differentiation in key structural attributes. In a natural or primary forest (i.e., unmanaged) of a given species or phenology 

grouping, the structural attributes like LAI and canopy heights are more likely to be normally distributed in space, and thus a 

single PFT classification with these and other structural terms calibrated to the spatial mean may lead to reasonable climate 20 

predictions. However, in intensively managed forests of the same species or phenology grouping, key structural attributes are 

less likely to be normally distributed, thus use of the same PFT-dependent parameters will lead to biased predictions. In 

addition to grouping forests according to their shared phenological characteristics, further grouping according to their shared 

structural characteristics would strengthen prediction confidence in intensively managed regions. Further, an enhanced 

grouping by structure would make it easier to attribute climate effects to forest management activities as the relationships 25 

between forest structure and various intervention types (i.e., harvest, thinnings, fertilization, etc.) are relatively well-known 

and understood. 

 

Climate modelers, however, have no real practical way of handling and assimilating the vast amounts of information 

stemming from the forestry science community surrounding the relationships between forest management and forest 30 

structure. Many regions, however, have well established National Forest Inventory (NFI) systems that continuously monitor 

the physical state of forests. In intensively managed regions, forest inventories will reflect the human influence on forest 

structure, and as such, they have often been used in research aiming to attribute climate effects to management activities 
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(Bright et al., 2014; Naudts et al., 2015; 2016). Classifying forests based on the structural properties they share at various 

successional stages under similar management conditions may be one way to link models of forestry with the land models 

employed in climate research. Important transient effects could then be included, for example, through changes in area under 

a given successional stage, with forestry models providing the link to the time dimension. Alternatively, distinct rule sets for 

successional dynamics following management disturbances could be developed analogous to those which are used to govern 5 

growth and competition in dynamic vegetation models (or land models run in dynamic vegetation mode). 

 

Here, we exploit NFI data to develop a forest classification scheme that better reflects the diversity in forest structure under 

managed conditions, and which facilitates the modeling of transient behavior connected to forest succession. From the 

perspective of climate modeling, NFI data is well-suited for enhancing the structural description of forests in global land 10 

cover datasets, because similar data is available for most developed countries and new data is collected annually. The 

scheme is based on K-medoids clustering and Mahalanobis distance analysis of NFI data grouped by forest composition. We 

focus on the Fennoscandian region (Norway, Sweden, and Finland) to develop our concept as it represents one of the most 

intensively managed forested regions of the world. We illustrate how an NFI-based classification scheme can be applied to 

enhance the representation of forests in global LC datasets like the European Space Agency (ESA) Climate Change 15 

Initiative’s (CCI) Land Cover (LC) -product (CCI LC, 2016). 

2 Materials and Methods  

2.1 Field data 

Norwegian NFI data (Tomter et al., 2010) from 2007 to 2015 and Swedish NFI data (Fridman et al., 2014) from 2011 to 

2015 were used in this study. NFI employs a network of field plots from which trees are measured and the growth monitored 20 

systematically. NFI data are systematically collected and processed by forest authorities and are used to quantify the amount 

and extent of forest at national level. The large diversity in forest structure throughout the Fennoscandian region (Fig. 3) as 

shaped by climate, management, and topography are well-represented in the Swedish and Norwegian NFI data. The 

Norwegian NFI contained data from 10,813 circular 8.92 m radius sample plots (250 m
2
), while the Swedish data contained 

data from 14,032 circular 10 m radius sample plots (314 m
2
). Plots which were divided (i.e. not completely circular) or 25 

which did not have trees were excluded from the data prior to the analysis. The main tree species of the area are Norway 

spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris, L.), and Silver and Downy birches (Betula pendula Roth and 

pubescens Ehrh.). Monocultural plots of birch are rare, but birches are common in plots with different species mixtures. 

Field data were classified as spruce, pine or deciduous (contains also other tree species) dominated forests based on species 

with the largest share of total stem volume (m
3
/ha) on the sample plot (Table 1.).   30 
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2.2 Forest classification scheme 

The process flow of developing and applying the forest classification scheme is illustrated in Fig. 1, and summarized briefly 

here: NFI field data were first used to develop the forest classification scheme based on four key forest structural attributes:  

total stem volume (V), height (H), crown length (CL) and LAI. H is Lorey’s height (the basal area-weighted height) which 

corresponds well with the aerodynamic height (Nakai et al., 2010), and LAI is the maximum growing season LAI. Models to 5 

calculate the plot total maximum LAI and CL are described in supplementary file (S1 and S2). A clustering analysis was 

subsequently employed to define clusters and solve class memberships based on species, V, and H. Then, the classification 

was applied to Multi-Source-NFI maps (MS-NFI) from Norway, Sweden, and Finland at high resolution. MS-NFI maps 

extrapolate forest characteristics for areas between NFI field plots using a non-parametric k-Nearest Neighbor (kNN) 

estimation method (e.g. Tomppo et al., 2014). This extrapolation step is called “multi-source” because it employs data from 10 

different remote sensing systems (i.e. satellite and aerial platforms) and field plots. MS-NFI applies high resolution satellite 

images to separate forested areas from other LC-categories and digital terrain models to correct topographical distortions. 

Finally, the classified maps were reprojected, aggregated, and resampled to the ESA CCI LC-product resolution (~300m). 

For each forested CCI LC-pixel, forest class and within-pixel tree cover fraction (%) were obtained based on classified high 

resolution maps. Two exceptions occurred: 1) If the original CCI LC-pixel was not classified as forest, but the MS-NFI maps 15 

indicated the presence of forest, and 2) If the original CCI LC-pixel was classified as a forest but MS-NFI maps indicate 

non-forest. In the former case, the pixel was classified as forest, whereas in the latter case, a gapfilling method was 

employed. In addition, for each forest CCI LC-pixel, coverage fractions (‘percentage layers’) for each of the twelve forest 

classes were calculated (i.e. twelve layers with values ranging between 0 and 100 based on subgroup abundance within the 

CCI LC-pixel). These layers were calculated to allow more flexibility in terms of number of input land cover classes in 20 

different land models (i.e. modelers may use e.g. three most abundant forest classes instead of keeping to a single class).  

2.2.1 K-medoids clustering  

The Norwegian and Swedish NFI data were merged prior to the classification exercise. The plots were grouped based on 

predefined vegetation classes (i.e. spruce, pine, and deciduous dominated to account for differences in forest structural 

properties between different species groups (Table 1.). A K-medoids algorithm was used for clustering because only the 25 

number of clusters is required as an input, and also because it is robust against outliers. K-medoids clustering was used to 

define the ‘centroids’ within V-H-CL-LAI – space. CL of deciduous species was modeled based on birch models (described 

in S2). The cluster median values of V-H-CL and LAI were used to create LUT for the three species groups (i.e. spruce, pine 

and deciduous). The K-medoids algorithm selects a random set of n medoids and computes distances of all data points to 

cluster medoids. Points are classified belonging to the cluster they are most similar to according to the sum of minimized 30 

squared Euclidean distances. All variables were normalized prior to analysis. Centers of the medoids are adjusted iteratively 

until medoids do not change. The analysis was run using the ‘cluster’ package in R. The optimal number of clusters was 
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assessed as the decrease in total within sum of squares as the number of clusters increased (i.e. ‘elbow method’ (Ketchen & 

Shook, 1996)) using R package ‘factoextra’. The optimal number of clusters was determined to lie between three and five, 

thus the number of clusters was set to four. 

2.2.2 Mahalanobis distance   

A method to assess cluster boundaries was needed, because many plots were located near the edges of the four-dimensional 5 

clusters. We chose to determine class memberships using two variables V and H since these are often available for large 

geographical areas from NFIs. Mahalanobis Distance (MD) was used to quantify the within-cluster variation within V- and 

H–space (i.e. VH-space), because it corresponds to the Euclidean distance after V and H have been normalized. MD is a 

multidimensional method to determine how many standard deviations a data point is away from the class mean. MD values 

were calculated for each species group and the respective subgroups. The binning (i.e. grid of 14 × 14) interval for V-space 10 

was set subjectively to add resolution on younger forest structures. For each grid cell, and for each subgroup, a median MD 

value was calculated. To represent results using a grid surface, the cell was assigned to a group with the smallest mean MD. 

Analysis was conducted using the ‘stats’ package in R.  

 

2.3 Application of the classification to MS-NFI maps  15 

2.3.1 Description of the MS-NFI maps 

We applied our forest classification scheme to MS-NFI maps of 2013 from Finland (LUKE, 2016) and of 2010 from Sweden 

(SLU, 2016) (background information provided in S4). Our classification was applied to high resolution maps of V by 

species and H (Sweden: 0.025 km
2
, Finland: 0.016 km

2
). For Norway, MS-NFI data (compiled during the first decade of the 

twenty-first century) called ‘SAT-SKOG’ (Gjertsen, 2010) and a forest resource map called ‘AR5’ (Ahlstrøm et al., 2014) 20 

were used to obtain all required inputs and cover the northernmost forest areas (i.e. Finnmark county). SAT-SKOG is 

provided as geospatial vector data and was rasterized to 0.025 km
2
 resolution. SAT-SKOG does not contain tree height 

information which was modeled based on tree species, tree age at breast-height (i.e. 1.3 m above ground surface), and site 

index using equations by Tveite and Braastad (1981). Separate equations were used for pine, spruce, and birch (birch model 

was applied to all deciduous species). However, as our forest classification requires H (i.e. Lorey’s height), and not the mean 25 

tree height calculated using site index, a separate model was developed based on Norwegian NFI data to scale the plot mean 

height into H (described in S3).  

2.3.2 Processing the MS-NFI maps 

MS-NFI data were classified as spruce, pine or deciduous dominated based on species with the largest share of pixel total 

stem volume (m
3
/ha). The share of other tree species than pine or spruce was assigned to deciduous group. After the species 30 

group was assigned, a separate LUT was used to determine pixel subgroup in VH-space (see section 2.2.2). Possible VH-
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combinations without MD value (i.e. falling outside the VH-space) were assigned to the closest subgroup based on V. After 

classifying all data, the forest classes were recoded as integers between one and twelve (i.e. three species groups × four 

subgroups). Finnmark county, the northernmost forested area in Fennoscandia, is currently not covered by SATSKOG but 

contains NFI-field plots and forest extent information from AR5. The NFI-field plots were classified based on species, V and 

H. AR5-based forest mask (resolution 0.02 km
2
) was used to identify forested areas, and for all pixels within a forest mask, 5 

forest class was assigned based on nearest neighbor.  

 

The classified high resolution maps were reprojected, aggregated, and resampled to complement the new ESA CCI LC-

product from the 2008-2012 time period (v.1.6.1) (CCI LC, 2016), which, temporally, approximately corresponds to the MS-

NFI data used in this study. The LC-product has three PFTs to describe boreal forests in Fennoscandia: broadleaved 10 

deciduous (60-62), needleleaved evergreen (70-72), and mixed broadleaved and needleleaved (90) (original LC-label values 

in parenthesis, shown in Fig. 4). Second digit from the left is designed to indicate the forest fraction within a LC-pixel. The 

canopy is ‘closed’ when forest pixel cover fraction is >40% (class labels 61 and 71) or ‘open’ when forest pixel cover 

fraction is between 15-40% (class labels 62 and 72). Labels 60 and 70 are used to indicate that the forest pixel fraction 

within that pixel is more than 15%, but it is not known whether that pixel is closed or open. The CCI LC-product used in this 15 

study contained only classes 60, 70 and 90 i.e. no pixels were assigned to subclasses (61, 62, 71 or 72). However, we add 

this subclass information to the CCI LC-product based on the high resolution MS-NFI data. Two types of aggregation 

routines were used for upscaling: forest class was assigned based on mode (among the twelve forest classes), and forest 

cover based on mean (for this purpose, forested pixels in high resolution data were recoded as 100 and other pixels as 0).  

 20 

We imported non-forest LC-classes from the CCI LC-product to supplement our forest classification. For pixels which were 

classified as forest by the CCI LC-product, but forest cover fraction within that pixel did not exceed the 15% threshold (i.e. 

definition used by the original CCI LC-product) according to the MS-NFI data, forest class was assigned based on nearest 

neighbor. Gapfilling was necessary because land (climate) models require completeness in LC to resolve computations of 

mass, energy, and momentum fluxes. In order to assess changes between the LC-classes, the percentage layers of different 25 

forest subgroups were classified to correspond with the original CCI LC-classes: If >=70% the pixels in high resolution data, 

within the CCL LC-pixel, were classified into conifer or deciduous groups, the pixel was considered as ‘needleleaved’ (class 

70) or ‘broadleaved’ (class 60), but otherwise ‘mixed’ (class 90). Raster analyses were performed using ’rgdal’ and ‘raster’ 

packages and confusion matrix (i.e. error matrix between original CCI LC-product and ‘back-classified’ enhanced CCI CL-

map) calculated using ‘caret’ package in R. 30 

2.3.3 Recoded class labels for the Enhanced CCI LC-product 

The forest classes (labels: 1-12) were recoded by adding 300 (i.e. forest class 12 would be coded as 312). In addition, two 

digits were added after recoded forest class number to indicate forest cover within the CCI LC-pixel, and whether a given 
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pixel is a ‘true’ forest pixel based on MS-NFI data or whether it is gapfilled. The fourth digit is used to indicate the fraction 

of forested pixels within an LC-pixel:  A value of ‘1’ indicates that the fraction of forested pixels within an LC-pixel is > 

40%, and value ‘2’ denotes that the fraction of forested pixels within an LC-pixel is between 15-40%. For ‘true’ forested 

pixels the last digit is ‘0’, whereas for gapfilled pixels the last digit is ‘1’. 

3 Results  5 

3.1 Forest classification scheme 

 

As a result of our classification scheme, a LUT of the key structural variables (i.e. V, H, CL, and LAI) was created (Table 

2.). The boundaries of the subgroups were determined based on MD, which can be visualized using a gridded representation 

of vegetation subgroups within the VH-space (Fig. 2) to select the right values from the LUT. The classified grid area and 10 

subgroup membership patterns reflect the variability of V and H in NFI data, which was used to define the classes. For 

example, the spruce dominated plots may have V up to 1500 m
3
/ha. In pine dominated plots the V did not exceed 900 m

3
/ha, 

and in deciduous plots the highest V was 1100 m
3
/ha. In spruce dominated plots, the H exceeded 30 m with many different 

Vs, whereas for pine the 30 m was exceeded either when the respective V was less than 50 m
3
/ha (i.e. tree is left for seed 

production during harvesting which is a common forest regeneration strategy in Fennoscandia) or large (more than 500 15 

m
3
/ha). In plots dominated by deciduous species the 30 m exceeded after V was more than 150 m

3
/ha. The location and size 

(i.e. patterns) of different subgroups in VH-space cannot be directly compared between different species groups, as 

Euclidean distances were used for their classification. 

 

3.2 Enhanced CCI LC-product  20 

 

The majority (59%) of the forest pixels in Fennoscandia were classified as pine dominated which was also the largest species 

group in Sweden (58%) and in Finland (72%) (Table 3.). However, in Norway the largest species group was deciduous 

(41%). Finland had slightly higher percentage of deciduous forests than Sweden. Spruce dominated forest was the smallest 

species group in Finland (14%) and in Norway (26%). Visual assessment of spatial distribution of different species groups 25 

and their subgroups showed that low-land areas in Finland and in Sweden were mainly dominated by pines and spruces, 

whereas deciduous species were most abundant in the northernmost, mountainous and coastal areas (Fig. 3). In 

Fennoscandia the most abundant subgroup within spruce dominated forest was ‘Spruce 3’ with class median values of V= 

201 m
3
/ha and H= 17m (see Table 2.). Within the pine dominated forest the most abundant subgroup was ‘Pine 2’ with class 

median V= 80 m
3
/ha and H= 12m.  For deciduous species group the median values of the largest subgroup ‘Deciduous 1’ 30 

were V= 7 m
3
/ha and H=5m.  
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In order to assess agreement between different LC-classes, the enhanced CCI LC-product was back-classified into original 

CCI LC-classes using the percentage layers of different forest subgroups. Kappa coefficient (measure of agreement which 

takes into account possible agreement occurring by chance) for classification was 0.55 and classification accuracy was 0.64 

(calculated based on Table 5.).   

 5 

Confusion matrix between the original CCI LC-product and the enhanced back-classified CCI LC-map showed that the 

highest agreement (30.4%) between the two classifications schemes occurred for forest class 70 (i.e. needleleaved evergreen 

trees) (Table 5.). The biggest discrepancy between LC-classes occurred between different forest types, as expected. Results 

showed that 14.5% of original CCI LC-class 70 was classified as 90 (i.e. mixed broadleaved and needleleaved trees) and 

1.4% of class 70 was classified into class 60 (i.e. broadleaved deciduous trees). The largest fraction of forested pixels in the 10 

back-classified enhanced CCI LC-map were classified as conifer dominated (=36.2%) (Fig. 4). The share of forest class 

‘mixed’ (i.e. class 90) was also high (=30.3%). However, the share of pixels classified as deciduous was relatively low 

(=5.3%). Overall, the enhanced CCI LC-product contained 16% more forest pixels than the original CCI LC-product. For 

example, the forest area increased as 5.1% of original CCI LC-class 180 (i.e. shrub or herbaceous cover), 3.6% of class 100 

(i.e. mosaic tree and shrub (>50%)), and 2.1% of crop LC-classes were classified as forest in the enhanced CCI LC-product. 15 

The fraction of gapfilled forest pixels was 4.2% of all classified pixels in the enhanced CCI LC-product. The classified land 

area increased by 0.5% as areas classified as no-data in the original CCI LC-product were classified as forest in the enhanced 

CCI LC-product. The spatial distribution of different LC-classes and their frequencies in the back-classified enhanced CCI 

LC-map are shown in Fig. 4, which shows both LC-class labels and descriptions.  

4 Discussion 20 

We developed a method for adding forest PFT classes based on K-medoids clustering of four key structural attributes 

extracted from NFI field data in which the differentiation is based on the sum of minimized Euclidean distances to cluster 

centroids. The LUT values obtained from clustering analysis are medians, and thus provide conservative estimates (i.e. 

cannot represent extreme values) of V, H, CL and LAI. While the clustering analysis was performed using Swedish and 

Norwegian NFI data, the LUT may be assumed applicable in Finland because the biomass functions by Marklund (1988) are 25 

applicable in Finland (Kärkkäinen 2005) and given the similarities in commercial species and forest management practices in 

Fennoscandia. 

 

Recently, other approaches have been developed for incorporating forest management into existing land surface (climate) 

models. For example, the radiative transfer based land-surface model ORCHIDEE was parameterized to simulate the effects 30 

of forest management for biogeochemical and biophysical variables (Naudts et al., 2015). The model was parameterized 

using diameter-at-breast-height (dbh) data from different European NFIs (French, Spanish, Swedish and German) (i.e. the 

key input values were modeled based on dbh using allometric models), and twelve parameter sets for specific tree species 
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(instead of presenting groups of species such as PFTs) were presented. However, a major drawback of individual tree-based 

approaches is that existing global LC maps are not designated to distinguish between individual species, which limits the 

spatial domain where such approaches can be applied. In addition, the need for residual groups remains because individual 

tree based approaches are not suited for areas where the forests are essentially mixtures of different tree species. The benefit 

of defining ‘broader’  PFT classes, such as those developed in this study, is that the broad functional types may be  separated 5 

from optical satellite data based on differences in optical and structural characteristics of the forests. In the future, as both the 

spectral, spatial, and temporal resolution of the optical satellite data improves, definition of narrower forest classes may be 

justified. Alternatively, Functional Traits (FT) may be used for modeling vegetation-climate interactions (Wullschleger et al., 

2014; Verheijen et al., 2013). Commonly, the community-weighted-mean trait value (i.e. based on relative abundances of 

species and their trait values) is used in models which apply the FTs concept. While FTs are highly scalable (i.e. from 10 

organism to ecosystem scale), well assembled (i.e. leaf, stem and root traits), and measurable, the downside of FTs is that the 

applicability of FTs is in its infancy and the lack of standards hinders its practical application.  

 

At present, some countries, such as Finland and Sweden, have national Airborne Laser Scanning (ALS) datasets, which 

could be used to obtain more accurate forest height estimates or to develop forest classification schemes for different land 15 

models. However, the drawback of these ALS datasets is that they cannot be used to separate between different tree species, 

which is one of the most important forest structural attributes. In addition, as few countries have national ALS datasets the 

geographical extent which could be covered using ALS based forest classification schemes would remain limited. The use of 

optical satellite data to classify the forests is unquestionable due to its superior spatial and temporal resolution, and thus will 

sustain its role as the most valuable tool for environmental monitoring and mapping. However, in the future, approaches 20 

combining both optical and ALS data may be expected to become more common, and thus allow development of more 

sophisticated forest classification schemes to increase the accuracy of the climate predictions in managed forested regions. 

 

This paper is response to the ‘call to action’ raised in the review by Ellison et al., (2017) which highlighted an urgent need to 

incorporate forest management impacts into existing modeling schemes in order to reach better political decisions regarding 25 

climate change adaptation, mitigation, and land use and water management. One of goals of this paper is to foster 

interdisciplinary discussions on alternative information sources, such as the existing NFI datasets, in Fennoscandia spanning 

back to the 1920’s, to enhance representation of forests in different land modeling frameworks. We developed a simple 

clustering and classification scheme to allow reiteration of our approach to NFI data from other countries. The enhanced LC 

maps and temporal descriptions of forest key structural attributes are needed for forecasting and back-casting the impacts of 30 

forest management on energy, water and carbon cycling.  

 

The presented forest classification scheme has many levels to serve the needs of different users. For example, for climate and 

hydrological modeling requiring full spatial coverage, the gapfilled pixels and non-forest LC-classes are provided.  
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Researchers that are able to run their models with no-data may select to remove the gapfilled pixels prior to analysis. Remote 

sensing scientists may wish to use only ‘true’ forest pixels and extract areas belonging to different species groups or 

subgroups, or select areas where the fraction of forests is lower or higher (i.e. ‘open’ or ‘closed’). In addition, the sub-pixel 

fraction – or the relative abundance of different forest subgroups within each CCI LC-pixel -- provides land modelers more 

control and flexibility in terms of the number of input LC-classes in different land models: The percentage layers for 5 

different forest subgroups may be used to obtain complete PFT-distributions (retrieved from high resolution data) for 

Fennoscandia or alternatively, modeler may choose to use e.g. three most abundant forest classes instead of holding on one 

class. The sub-pixel fractions also provide greater “cross-walking” (Poulter et al. 2015) ability at finer scale resolution. Our 

forest classification scheme and the related map products (i.e. Enhanced CCI LC-product and the respective percentage 

layers) allow customized model ‘inputs’ to fit the needs (or requirements) of various land models.    10 

 

Simple clustering analysis of the NFI data was used to optimize grouping of forest cover based on four key structural 

attributes that are strong controls of surface-atmosphere exchanges of mass, energy, and momentum. Our new forest cover 

classification was subsequently applied to MS-NFI maps, which were then aggregated and fused with the ESA CCI LC-

product. The resulting enhanced CCI LC-product and related LUT of the key structural variables, can now be used to better 15 

quantify surface fluxes linked to present-day forest cover. To our knowledge, this is the first study to use NFI field data 

together with MS-NFI maps to enhance the characterization of forest structure in a format that is compatible with many land 

surface (climate) models (i.e. in modeling frameworks) where changes in vegetation structure are captured by area-based 

changes in PFTs. The methods used for creating the LUT were carefully explained to allow other researchers to replicate the 

same procedures using NFI data from other countries. The benefit of the classification scheme described in this study is that 20 

the required data (i.e. NFI data and MS-NFI maps of species, V and H) are readily available for many countries. Future 

research is needed to evaluate the sensitivity of present-day predictions in carbon, moisture, and energy fluxes to the 

different PFT grouping levels, and to develop recommendations and guidelines for prescribing future forest transitions under 

changing climate and management regimes.  

Data availability 25 

The MS-NFI Forest resource maps for Finland are available through Natural Resources Institute Finland (LUKE) portal: 

http://kartta.luke.fi/opendata/valinta.html. For Sweden the forest maps may be obtained through Swedish University of 

Agricultural Sciences (SLU) portal: http://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-

inventory/forest-statistics/slu-forest-map/. For Norway the MS-NFI data are available by request. 

30 The enhanced CCI LC-product for Fennoscandia, including the percentage layers, can be downloaded from: (DOI will be 

added here) 
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Figures and tables  

 

Table 1. Descriptive statistics for the National Forest Inventory (NFI) data. Abbreviations: n=number of sample plots, dbh= 

diameter-at-breast-height, H=basal area weighted mean tree height (i.e. Lorey’s height) and V=total stem volume.  

 5 

      dbh (cm)   H (m)   V (m
3
/ha)   

Area Species n mean range mean range mean range 

Norway Spruce 3364 12.6 5.0 - 49.0 13.0 2.9 - 32.3 152.0 0.2 - 1492.4 

  Pine 3650 14.1 5.1 - 48.9 11.5 2.4 - 28.6 97.8 0.2 - 656.6 

  Deciduous 3799 9.4 5.0 - 99.9 8.3 2.4 - 24.8 53.0 0.2 - 592.9 

Sweden Spruce 4552 16.2 1.0 - 52.0 15.3 1.4 - 40.2 177.8 0.5 - 1010.2 

  Pine 7028 16.2 1.0 - 64.6 13.6 1.4 - 32.1 120.0 0.6 - 752.3 

  Deciduous 2452 12.8 1.0 - 81.2 12.8 1.5 - 32.6 101.9 0.4 - 1001.5 

 

 

Table 2. A forest classification scheme Look-Up-Table (LUT). Abbreviations: V=total stem volume (m
3
/ha), H=Lorey’s 

height (m), CL=Crown length (m), and LAI=Leaf Area Index (Maximum during growing season; m
2
/m

2
). Recoded label -

column is a key to be used with the Enhanced CCI CL-product. 10 

      LUT values 

Species group Subgroup Recoded label V H CL LAI 

Spruce 1 301 22.0 7.5 6.3 1.4 

  2 302 92.2 12.3 10.1 4.3 

  3 303 201.3 16.8 13.2 6.7 

  4 304 373.9 22.0 15.8 9.1 

Pine 1 305 20.8 7.5 4.6 0.9 

  2 306 80.0 11.6 6.7 2.4 

  3 307 129.5 17.0 9.4 2.3 

  4 308 236.4 17.2 8.4 4.4 

Deciduous 1 309 7.2 4.9 3.2 0.5 

  2 310 36.1 8.4 5.5 1.8 

  3 311 97.6 12.2 7.9 3.9 

  4 312 227.0 18.3 10.3 7.0 
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Table 3.  The percentage (%) of forest pixels (i.e. excluding gapfilled pixels) belonging to different species groups in the 

Enhanced CCI LC-product (referred as ‘Fennoscandia’) and separately for each country (The spatial distribution of different 

forest subgroups and their frequency distributions are shown in Fig. 3). Values are based on MS-NFI data.  

 

  Fennoscandia(%) Norway (%) Sweden (%) Finland (%) 

Spruce 22.4 26.2 29.0 13.7 

Pine 58.8 32.7 58.3 71.7 

Deciduous 18.8 41.1 12.6 14.6 

 5 

 

Table 4. The percentage (%) of different forest classes in the Enhanced CCI LC-product (i.e. contains gapfilled forest 

pixels). The grey bars inside the cells are used to visualize distributions of different forest classes in Fennoscandia and 

separately for each country.  

 10 

Group Subgroup Recoded label Fennoscandia (%) Norway (%) Sweden (%) Finland (%)

Spruce 1 301 2.5 0.2 1.9 0.4

2 302 4.3 1.2 2.5 0.6

3 303 11.7 2.5 6.0 3.1

4 304 3.9 1.0 1.7 1.2

Pine 1 305 15.3 1.1 6.5 7.7

2 306 20.4 1.5 8.8 10.1

3 307 11.2 3.0 1.7 6.5

4 308 11.9 0.6 7.3 4.0

Deciduous 1 309 8.2 2.7 3.0 2.6

2 310 4.9 2.9 0.8 1.2

3 311 3.4 1.4 0.5 1.4

4 312 2.3 0.7 0.9 0.7  
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Table 5. Confusion matrix in percentage (%) between the original CCI LC-product and the back-classified enhanced CCI 

LC-map. Grey background is used to indicate the ten classes with the highest percentage of pixels, and small percentages are 

shown as 0.00. Kappa coefficient was 0.55. Label definitions shown in Fig 4.  
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Figure 1. Flowchart for developing and applying the forest classification scheme. Abbreviations: National Forest Inventory 

(NFI) data, Look-Up Table (LUT), total stem volume (m
3
/ha) (V), Lorey’s height (H), Crown Length (CL), Leaf Area Index 

(LAI), Multi-Source NFI (MS-NFI, i.e. products provided by forest authorities), Climate Change Initiative Land Cover (CCI 5 

LC) product.  

 

 

 
Figure 2. Gridded representation of vegetation subgroups, i.e. a) spruce, b) pine and c) deciduous, within the total stem 10 

volume (V) and Lorey’s height (H) –space (referred as VH-space) based on NFI data. Visualization is required to map their 

distribution in VH -space and used to apply the classification to the MS-NFI maps.    
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Figure 3. Spatial distribution of MS-NFI forest classes (i.e. without gapfilled forest pixels) in Fennoscandia. The forest 

subgroup was assigned based on most abundant forest class within the CCI LC-pixel. For colors, see online version of the 

article.  5 
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Figure 4. Back-classified enhanced CCI LC-map with non-forests LC-classes from the original CCI LC-product for 

Fennoscandia. The percentage layers of each forest subgroup were used for back-classifying our data into original CCI LC-

forest classes (see section 2.3.2.). Histogram shows LC-class percentages of the back-classified enhanced CCI LC-map. For 

colors, see online version of the article. 5 
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